Skip to main content
Search Context


Leamon Study: During La Niña, sea surface temperatures in the eastern tropical Pacific drop below average.

Solar Superstorms of the Past Help NASA Scientists Understand Risks for Satellites

At the edge of space, the ever-growing fleet of satellites in low-Earth orbit are locked in a constant, precarious battle with friction.  Continue reading

How NASA Will Protect Astronauts From Space Radiation At The Moon

August 1972, as NASA scientist Ian Richardson remembers it, was hot. In Surrey, England, where he grew up, the fields were brown and dry, and people tried to stay indoors — out of the Sun, televisions on. But for several days that month, his TV picture kept breaking up. “Do not adjust your set,” he recalls the BBC announcing. “Heat isn’t causing the interference. It’s sunspots.”       Read more



Parker Solar Probe Approaches Second Solar Encounter

Sarah Frazier  – March 28, 2019

On March 30, 2019, Parker Solar Probe begins the second solar encounter phase of its mission, culminating in its closest approach to the Sun, called perihelion, on April 4 at 6:40 p.m. EDT.

During this solar encounter phase, which lasts until April 10, the spacecraft’s four suites of science instruments are fully operational and storing science data collected from within the Sun’s corona. As designed, Parker Solar Probe will be out of contact with Earth for several days during the solar encounter. This allows the spacecraft to prioritize keeping its heat shield, called the Thermal Protection System, oriented towards the Sun, rather than pointing its transmitter towards Earth. Science data from this second solar encounter phase will down link to Earth over several weeks later in spring 2019…

Read more…Parker Probe Update

Parker Probe Animations


 Mike Wehner,BGR News
Parker Solar Probe
NASA had a big year in 2018 with several bold new missions to study various features of our Solar System, and one of the most exciting was the launch of the Parker Solar Probe which will study the Sun in more detail than has ever been possible before. The probe has already broken several records and proven that it’s capable of enduring the intensity of our star, and it’s starting out 2019 by adding another notch to its belt.

The probe, which launched in August of last year, recently completed its first full orbit of the Sun on January 19th. It’s a feat that the spacecraft will repeat many times over the next several years, but completing the first full loop is obviously cause for celebration.

“It’s been an illuminating and fascinating first orbit,” Parker Solar Probe Project Manager Andy Driesman said in a statement. “We’ve learned a lot about how the spacecraft operates and reacts to the solar environment, and I’m proud to say the team’s projections have been very accurate.”

The probe gathered a huge amount of data during its first trip around the Sun, and it performed much of its work without being in radio contact of its handlers back on Earth. As it orbits the Sun, the probe will regularly lose contact with Earth and then reconnect when it emerges from behind the star once more.

Thus far, the probe has sent back over 17 gigs of scientific data and it’s still streaming more observation data back. The data dump won’t be finished until April, NASA says.

The probe is expected to put in nearly seven years of work, making a total of 24 orbits and getting gradually closer to the Sun with each pass. It is tasked with observing many different functions of the star, including the generation of solar wind and the outflow of energy from the Sun into space, advancing our understanding of solar weather.

For more information visit: NASA Mission To Touch The Sun


GPHI researcher, Dr. Dennis Chornay, initiative and unique experience proved to be the lynch-pin in the recent selection of a $2.3M rocket proposal by NASA

Dr Dennis Chornay played a pivotal role in building and testing a prototype technology demonstrator instrument for very high-resolution electron spectroscopy.  The results were written up, and this year, accepted into the prestigious Review of Scientific Instruments. He also contributed to encouraging the review panel to select and fund a $2.3M rocket proposal, the Endurance mission. The “Endurance” will make the first ever measurements of Earth’s ambipolar electric field.  The results of this work are published in the Review of Scientific Instruments, “A hybrid electrostatic retarding potential analyzer for the measurement of plasmas at extremely high energy resolution”, 89,113306 (2018).


For more information visit: REVIEW OF SCIENTIFIC INSTRUMENTS 89, 113306 (2018)


New Dwarf ‘Goblin’ Planet Spotted at Edge of Solar System

Rob Waugh,Yahoo News UK

A tiny new dwarf planet – nicknamed ‘The Goblin’ – has been spotted at the outer edge of our solar system, and it offers hints it’s not alone out there.

Researchers from Carnegie spotted the object far beyond Pluto – and believe that its wobbly orbit suggests there could be a huge, unseen ‘Planet X’ out there.

The researchers believe that the new object could lead them towards Planet X or Planet 9, a giant, hidden planet thought to be 10 times more massive than Earth.

The elongated planet 2015 TG387 was discovered about 80 astronomical units (AU) from the Sun, a measurement defined as the distance between the Earth and Sun.

For context, Pluto is around 34 AU, so 2015 TG387 is about two and a half times further out than Pluto.

It’s believed to be 300km (186 miles) across, which puts it at the small end of qualifying as a dwarf planet.

It was spotted in  October of 2015 at the Japanese Subaru 8-meter telescope located atop Mauna Kea in Hawaii – but it took the astronomers a few years to work out its orbit.

The new object is on a very elongated 40,000 year orbit and never comes closer to the Sun, a point called perihelion, than about 65 AU.

For more information about the mission, visit: New Dwarf Goblin Planet


Rob Waugh,Yahoo News UK

The probe will fly closer to the sun than any previous spacecraft (NASA)

For more information about the mission, visit: NASA’s Parker Solar Probe First Images



NASA, ULA Launch Parker Solar Probe on Historic Journey to Touch Sun

Hours before the rise of the very star it will study, NASA’s Parker Solar Probe launched from Florida Sunday to begin its journey to the Sun, where it will undertake a landmark mission. The spacecraft will transmit its first science observations in December, beginning a revolution in our understanding of the star that makes life on Earth possible.

Roughly the size of a small car, the spacecraft lifted off at 3:31 a.m. EDT on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex-37 at Cape Canaveral Air Force Station. At 5:33 a.m., the mission operations manager reported that the spacecraft was healthy and operating normally.

The mission’s findings will help researchers improve their forecasts of space weather events, which have the potential to damage satellites and harm astronauts on orbit, disrupt radio communications and, at their most severe, overwhelm power grids.

“This mission truly marks humanity’s first visit to a star that will have implications not just here on Earth, but how we better understand our universe,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate. “We’ve accomplished something that decades ago, lived solely in the realm of science fiction.”

During the first week of its journey, the spacecraft will deploy its high-gain antenna and magnetometer boom. It also will perform the first of a two-part deployment of its electric field antennas. Instrument testing will begin in early September and last approximately four weeks, after which Parker Solar Probe can begin science operations.

“Today’s launch was the culmination of six decades of scientific study and millions of hours of effort,” said project manager Andy Driesman, of the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. “Now, Parker Solar Probe is operating normally and on its way to begin a seven-year mission of extreme science.”

Over the next two months, Parker Solar Probe will fly towards Venus, performing its first Venus gravity assist in early October – a maneuver a bit like a handbrake turn – that whips the spacecraft around the planet, using Venus’s gravity to trim the spacecraft’s orbit tighter around the Sun. This first flyby will place Parker Solar Probe in position in early November to fly as close as 15 million miles from the Sun – within the blazing solar atmosphere, known as the corona – closer than anything made by humanity has ever gone before.

For more information about the mission, visit: Parker Probe Launch


NASA Previews Mission to Study Frontier of Space

NASA hosted a media briefing at 1 p.m. EDT Monday, June 4, on the agency’s mission to explore Earth’s ionosphere and the processes there that impact life on Earth’s surface. The event was aired live on NASA Television, the agency’s website and Facebook Live.

Ionospheric Connection Explorer (ICON) will study the layer of charged particles extending from about 50 to 360 miles above Earth’s surface, through which radio communications and GPS signals travel, and the processes there that can distort or even disrupt these signals. Knowledge gleaned from this mission will aid in mitigating its effects on satellites and communications technology worldwide.

The event was held at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Participants will include:

  • Willis Jenkins, ICON program executive at NASA Headquarters, Washington
  • Thomas Immel, mission principal investigator at the University of California Berkeley’s Space Sciences Laboratory
  • Rebecca Bishop, ionospheric research scientist at Aerospace Corporation
  • Douglas Rowland, mission scientist at Goddard

The public can send questions on social media by using #askNASA at any time during the event.

ICON launched June 14 Eastern time on an Orbital ATK Pegasus XL rocket from Kwajalein Atoll in the Marshall Islands and deploy from Orbital’s L-1011 Stargazer aircraft.

For more information about the mission, visit:


Eugene Parker’s Journey to the Sun

He coined the term “solar wind.” Now a spacecraft will brave its source

Air & Space Magazine | Subscribe
June 2018

In July, humanity will dispatch its first emissary to our star. A Delta IV Heavy rocket with an added upper stage will boost NASA’s Parker Solar Probe away from Earth and, whipped by Venus’ gravity, it will soon become the fastest spacecraft ever flown. At its top speed, the spacecraft will scream through space at 430,000 mph, fast enough to travel from New York to Los Angeles in 25 seconds.

 During seven years of carefully choreographed swoops, it will draw closer to the sun, like a matador dancing inward toward a glowering bull. It will ultimately settle into an elliptical orbit that, at perihelion, comes within 3.9 million miles of the sun’s visible surface, more than seven times closer than any spacecraft has dared venture. It will not touch the surface. That would be too dangerous—and impossible, because the sun is a roiling furnace of plasma, a state of matter unable to form what could be considered a surface. Instead, the probe will fly directly into the only region of the solar system so far unexplored by spacecraft: the corona. What happens here, in the sun’s atmosphere stretching out millions of miles, affects this planet and every other place in our neighborhood, but its dynamics remain mysterious.

We know that the sun’s atmosphere is much hotter than its outer plasma layer, a fact that seems to defy thermodynamics. Solar wind from the corona drifts outward, crossing 93 million miles of space to create the aurora in Earth’s magnetosphere. From Earth, we can’t see the corona, unless we watch during a total solar eclipse. The Parker Solar Probe will sample this layer of the sun directly, and for the first time we will be able to retrieve information about the realm that connects Earth and our star.

Comet tails were the first evidence that the sun was more than a static ball in the sky. In 1607, an apparition appeared at night: a comet that would eventually be named after Edmond Halley, the astronomer who predicted its 75-year orbit. German astronomer Johannes Kepler was among its many observers, and he wrote to Galileo Galilei wondering whether it was sunlight that caused the comet’s tail to smear across the sky. Perhaps one day, he speculated with grand vision, voyagers could use this solar power as propulsion on trips across the stars: “Provide ships or sails adapted to the heavenly breezes, and there will be some who will brave even that void.”

Not until the 20th century did astronomers propose that along with light, the sun emits a steady stream of particles, which pushes a comet’s tail around. In the early 1950s, Eugene Parker, an astrophysicist at the University of Chicago, wanted to study why the sun’s atmosphere is so hot. He read some of the papers on solar particles and started connecting the dots. Parker, now 90, says that during his research he discovered that “the corona is mostly static near the sun. There is some slight motion, but it is not flowing at any noticeable rate.” But when you study this radiation much farther out, “it is busy blowing the comet tails away,” he says. “That says you are dealing with a gas—a hydrodynamic flow of gas.” In other words, the sun was emitting not just electromagnetic radiation but low-density gales of particles.

If this flow from the sun was gas, Parker could use familiar physics equations to further describe what is happening in the corona. His computations revealed that at the extremely high temperatures of the corona’s outermost layers, the gas has to be flowing away from the sun extremely quickly. In fact, by the time they reached Earth, the gales would still be supersonic. Parker coined a term for the outflow: the solar wind.

“It was something most people couldn’t seem to swallow. They expressed stern disbelief,” he recalls. “I told them, you know the corona is static at the sun, and you know from the comet tails that it is moving very fast farther from the sun. You put in the temperatures that are observed [in the corona], a million degrees, and it cannot help but be a solar wind. That’s just how the dynamics turn out.”

In 1958, Parker published a paper with what his calculations revealed: that the phenomenon is made up of a complex system of plasma flow, magnetic fields, and high-energy particles. He argued that it affects all the planets and space throughout the solar system, and correctly predicted the twisted shape—now called the Parker spiral—that the rotating sun’s magnetic field would take as the solar wind carried it to the outer solar system. His theory was largely ignored until 1962, when Mariner 2 became the first probe to travel beyond Earth’s magnetic field. The spacecraft observed the supersonic solar wind (and the fact that our magnetosphere largely shields us from it), and Parker was vindicated.

The Parker Solar Probe, officially named last summer, is the first spacecraft NASA has dedicated to a person still living. It’s a tribute to the significance of Parker’s contribution to science, but also an indication of just how young the field of solar research is, and how far it still has to go.

Read More:  Journey To The Sun


Johns Hopkins Engineers Help NASA Restore

Links to ‘Zombie’ Satellite


By Jonathan M. PittsContact Reporter The Baltimore Sun

When aerospace engineers launch a satellite, they don’t expect it to last forever. So when the NASA orbiter known as IMAGE disappeared from view after five years in orbit, few were alarmed.  What did stun the field came last January, when an amateur satellite watcher spotted IMAGE in the skies again after a dozen years — and realized that it was still trying to talk to Earth.

“I’ve been in this field since the late 1980s, and it almost never happens that a lost spacecraft is found again, especially after so long,” said Jeffrey J.E. Hayes, program executive for missions at NASA headquarters in Washington. “IMAGE is this zombie that came back to life.”

Now space scientists across the United States are working on the long-lost spacecraft again, trying to help NASA keep steady contact and assert control. Among them is a team at the Johns Hopkins University Applied Physics Laboratory in Laurel.

It was Bill Dove, an engineer who manages the Hopkins lab’s Satellite Communications Facility, and his colleague Tony Garcia, lead engineer in APL’s Space Exploration Sector, who led the way in locking down communication with the $150 million craft, first launched in 2000. They’ve spent months downloading its signals and feeding them to NASA.

Read More:  Link To Long-Lost Satellite


NASA Satellites Aid Study of Relativistic Particles


“The results finally address this main controversy we’ve been having about the radiation belts for a number of years,” said researcher Alex Boyd.  (By Brooks Hays  |  May 29, 2018 at 5:01 PM)
New research offers insights into the source of relativistic particles found in the Van Allen radiation belts circling the Earth. Photo by NASA’s Goddard Space Flight Center

New data collected by NASA satellites suggest local acceleration explains most of the relativistic particles found in the Van Allen radiation belts circling Earth.  After analyzing data collected by NASA’s Van Allen Probes and the agency’s THEMIS satellites, scientists determined electromagnetic waves called chorus waves are responsible for accelerating particles in the Van Allen belts to relativistic speeds.  When recorded, the wave’s pattern produces a chirping sound that recalls the chorus of a songbird. According to the new research, the waves steadily push ions and electrons found in the belt into higher and higher speeds.  By developing models that better explain the propagation of high-energy particles inside the radiation belts, scientists can better predict space weather and forecast risks for Earth’s communications satellites.

Read More:  NASA Satelites Aid Study of Relativistic Particles


 Two Space Probes Will Look Into The Sun Closer Than Ever


NASA and the Europen Space Agency (ESA) will launch two vehicles – Parker Solar Probe and Solar Orbiter to study the sun at the closest distance than any other space vehicle before it. This study will permit a better comprehension of the way in which the earth deals with the sun´s radiation, however, it will also help understand the way in which the sun´s energy triggers space weather events. The main objective of this project is to better understand the sun´s processes and how it affects space and our planet, including space technology, so as to predict future sun activity.

Parker Solar Probe

This space vehicle, which is scheduled to be launched this year, will fly within 6,400,000 km (4 million miles) – the closest a space vehicle has ever flown – at almost 720000 km/h (45000 miles/h), from the sun´s corona.

The data this spacecraft will collect will offer new information about how the sun and earth are connected. It´s believed that the mission will help open new theories of the way in which the sun´s corona gets hotter than the surface of the sun and the great speed at which the solar wind leaves our star. The imaging instruments will take shots of the sun from varied angles, including the poles and the equator.

Solar Orbiter

Scheduled to be launched in 2020, this vehicle will study the sun from within 42 million km (26 million miles) from its surface. In a circular orbit around the sun, this orbiter will fly in and out of the ecliptic plane to capture the first ever images of the sun´s poles. The orbiter´s first view of the poles may lead to a deeper understanding of the processes that originate from the sun´s magnetic field.  This spacecraft will reach its scheduled orbit three years after launch with the assistance of gravitational man-oeuvres from Venus and Earth.

Scientific objectives

Both of these missions will take a closer examination at the sun´s corona, which is not predictable, as its activity is not really understood. Information gathered from previous missions have provided clues that lead to thinking that the sun’s corona may contribute to the processes that make the solar wind acquire great cosmic speeds. The probe will capture the solar wind as it is ejected from the corona, obtaining accurate measurements of it. The program´s main goals include new insights into the way in which the solar system works, the origins of the universe, the processes that drive the sun´s activity and its impact on our planet.

 Read More:  Two Space Probes and The Sun


Scientists Discover a New Type of Magnetic Event

By  in  | May 16, 2018


Space scientists recently uncovered a new type of magnetic event in the near-Earth environment. The new event happens just outside the outer boundary of Earth’s magnetosphere – the sphere around Earth within which our world’s magnetic field is the dominant field – in a region called the magnetosheath. Scientists using an innovative technique to squeeze extra information out of existing data learned that a process known as magnetic reconnection takes place in the magnetosheath. They reported their new discovery in a study in the peer-reviewed journal Nature on May 9, 2018.

Before you shake your head and move on, consider this. Consider the famous Halloween Storms of the year 2003. They weren’t ordinary rain storms, but geomagnetic storms high in Earth’s atmosphere, triggered by massive solar flares erupting on the sun, which had sent X-rays zooming through our solar system. Along with the flares, the sun expelled giant clouds of solar material, called coronal mass ejections, or CMEs. The CMEs slammed into Earth’s magnetic field and pushed material and energy in toward Earth, creating the Halloween Storms, which caused brilliant auroras that could be seen as far south as Texas. NASA also said the 2003 solar storms:

… interfered with GPS signals and radio communications, and caused the Federal Aviation Administration to issue their first-ever warning to airlines to avoid excess radiation by flying at low altitudes.

Every step leading to these intense storms – the flare, the CME, the transfer of energy from the CME to Earth’s magnetosphere – was ultimately driven by the catalyst of magnetic reconnection.

Read More:  New Magnetic Event



Parker Solar Probe Ready for the Sun


The Parker Solar Probe will explore the surface of the Sun like never before. A team of scientists have been putting the spacecraft through its paces by blasting it with the heat from old IMAX cinema projectors.

The Parker Solar Probe – a new spacecraft that will get up close and personal with the Sun – has passed its final test and is ready to make the journey to our host star.

Scientists at the University of Michigan have been testing the endurance of one of its key pieces of equipment using an unusual method: blasting it with the heat and light of old IMAX projectors.

The Parker Solar Probe is a $1.5 billion NASA mission due to launch in summer 2018. Part of the mission will be to examine the powerful outbursts that occur on the surface of the Sun.

Read more about the Sun from BBC Sky at Night Magazine:

The Sun is a dynamic body, and outbursts of plasma known as coronal mass ejections can sometimes interfere with satellite electronics, GPS and radio communications on Earth.

Part of the Parker Solar Probe mission will be to gain a better understanding of these processes, enabling scientists on Earth to anticipate potential disruptions.

Read more:  Parker Solar Probe


Fly Me to the Sun


Why more than 1 million people put their names on a mission to our nearest star


A man carries a surf board into an ocean during the sunset at a beach in Bali, Indonesia, Saturday, Oct. 18, 2014. (AP Photo/Firdia Lisnawati)

This summer, a nasa spacecraft will launch into space from the coast of Florida, headed for the sun. After making several flybys of Venus to slow itself down, the Parker Solar Probe will come within 4 million miles of the sun’s scorching surface, closer than any spacecraft in history.

Nasa is never one to miss an opportunity to drum up publicity for upcoming space missions, especially the less flashy ones. Sending something to study the star we see every day may sound less thrilling, for example, than launching a mission to find exoplanets around 200,000 stars. So in March, the space agency announced a little campaign to promote the Parker Solar Probe: Send us your names and we’ll put them on a microchip inside a spacecraft bound for the sun. (They even got Star Trek actor William Shatner to help promote it.)

The call for names, which closed at the end of last week, received more than 1.1 million submissions, according to a spokesperson at Johns Hopkins University’s Applied Physics Laboratory, which designed and built the Parker Solar Probe. On the surface, the campaign was little more than a quirky act to get the public interested in space exploration. But considered more deeply, it represents the human desire to find ways to outlive ourselves and our bodies, to be remembered once our time here on Earth is up.

Read More:  Fly Me To The Sun